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A risk-driven reliability model and testing process is developed that borrows concepts
from classical sequential testing methodology which is used for hardware. The model is
adapted to software. Both consumer and producer risk are considered, reflecting the fact
that the consumer (e.g., customer) and producer (e.g., contractor) have different perspectives
concerning what they consider to be tolerable risks of software failure. Similarly, there is
also a differentiation based on what the consumer and producer consider to be acceptable
reliability. Test rules are specified for determining at each decision point in testing whether
the software and the model prediction accuracy are acceptable. In addition, the test rules
serve as stopping criteria for testing. Both empirical and predicted quantities are assessed.
Based on experience in using the model, lessons learned are provided with the objective of
improving the model and process for future applications. This model and test scenario is
applied to a real application involving the NASA Space Shuttle flight software. The model
and test scenario can be tailored to commercial applications, as well.

I. Model and Process Basics

SOFTWARE test scenarios involve the comparison of the software’s actual outputs, resulting from test scenario
execution, with its expected outputs, as documented by Whittaker [1]. The model actual outputs presented here

are empirical values of risk and reliability and the expected outputs are represented by specified threshold values of
risk and reliability.

In addition, risk and reliability predictions provide stopping rules for testing. The foundation for these concepts of
software testing is based on classical methods addressed to hardware [2], but with significant modifications to tailor
the models to software testing and reliability. The classical methods of sequential testing, involving the concepts of
consumer and producer risks [2], are very useful for structuring a testing and reliability model. These concepts are
however lacking in the literature on software testing [3]. Software testing emphasizes techniques such as statement
coverage, decision coverage, branch coverage, and data flow coverage [3]. The classical methods are not entirely
satisfactory for software because they are based on testing large quantities of homogeneous hardware items. This
is not the case with software where, in many cases, one-of-a kind of software system is developed and tested. The
classical methods therefore require modification to be applicable to software. Another important facet of the risk and
reliability process is to evaluate not only the software but also the model that predicts software risk and reliability as
well. If the model cannot predict accurately, the predictions cannot be used and we must try to validate another model.

II. Safety Critical Software Considerations
Since the example application is about the Shuttle software, it is important to consider the risk and reliability

requirement of this type of software. To assist in making informed acceptance decisions, software risk analysis and
reliability prediction are integrated to provide a comprehensive approach to implementing test rules designed to
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reducing risk and increasing reliability. This approach is applicable to all software, and in particular, it is critical
for certifying safety critical software because achieving improvements in the reliability of software contributes to
system safety [4]. In addition, for this type of software, it is critical to have a feedback mechanism during testing to
indicate when to continue to test and when to stop testing. Important feedback criteria are level of risk, reliability,
and reliability growth. This approach was inspired by the feedback mechanism concept of Cangussu et al. [5] in
which a test manager was used to monitor the difference between observed reliability and reliability predicted by a
model. The difference is fed back into the test process to control the next step in testing. In my case, the differences
between observed and required risk and reliability are used to control the test process.

III. Other Reliability Testing Methods
Reliability testing can be conducted at a macro or microlevel. This model uses the former in which the concern

is about the big picture of risk, failure occurrence, and reliability, and how to mitigate risk and increase reliability in
sequential test scenarios. In the microview of testing, however, the focus is on methods that deal with the specifications,
code, and data flow to produce effective fault removal in a cost-efficient manner. Specification-based testing produces
test cases based on inputs, outputs, and program states. Code-based testing addresses computation results, predicate
coverage, and control flow coverage. In data flow-based testing, test cases are produced to cover the execution space
between where variables are declared and where they are used. Yet another method is mutation testing in which
mutants of the original code are produced by introducing faults into program statements and observing the resulting
execution behavior [6].

Lyu provides a brief description of some of the important white box testing methods: white box testing uses
the structure of the software to measure the quality of testing. Other testing schemes include statement coverage,
decision coverage, and data-flow coverage. Statement coverage testing constructs test cases such that each statement
or a basic block of code is executed at least once. Decision coverage constructs test cases such that each decision in
the program is covered at least once. A decision is covered if, during some execution, it evaluates to true and in the
same or another execution it evaluates to false [7].

It appears that none of these methods is superior to the others in all cases and that their effectiveness and efficiency
are application dependent. Selected tests at the microlevel should be combined with a macrolevel approach, to provide
a comprehensive attack on the software risk and reliability problem. The approach used here is to model testing at the
micro-level (i.e., white box testing) to provide failure count input to the macrolevel model (i.e., black box testing).
The process does not have to stop there. The approaches can be used synergistically by feeding black box testing risk
and reliability predictions to white box testing so that the latter will have an assessment of likely operational risk and
reliability. Then, the white box strategy would be adjusted to focus testing on the highest risk and lowest reliability
software.

IV. Software and Model Performance
In the analysis and evaluation of test results the engineer must be careful to distinguish between software perfor-

mance and model performance. Therefore, before making predictions with the model, one way in which the engineer
could assess whether its prediction accuracy is unacceptable or not is to see whether the accuracy goals have been
met after two tests. If this is not the case, try to validate another model. If the predictions are acceptable, proceed
with the risk and reliability tests.

With regard to model performance, it is assumed that the model will perform in future operational time as it has
during test time. Of course, this may not be the case, but it is the best we can do until the future is reached when
we can compare actual risk and reliability with the predicted quantities. Continuing this bootstrapping process will
continually refine prediction accuracy as more failure data are collected. In addition, confidence in the model can be
built by conducting multiple tests to train the model to improve its prediction accuracy.

V. Test Rules
One of the most difficult aspects of testing is to answer the question: “when to stop testing?” Myers suggests that

testing should be stopped when we have discovered and corrected a given number of faults [8]. While this approach is
certainly better than stopping when money and time run out, and it is indirectly related to reliability, criteria directly
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related to risk and reliability are suggested. With this approach, the stopping rule to achieving acceptable levels of
risk and reliability can be keyed. This concept is embodied in the test rules.

Test rules should also include the criticality of the software being tested. This factor is mentioned by Schmid
et al. [9], where the authors state: “Many commercial products are not fully prepared for use in high assurance
situations. In spite of the criticality of these applications, there currently exists a dearth of software assurance
techniques to asses the robustness of both the application and the operating system under strenuous conditions. The
testing practices that ordinary commercial products undergo are not thorough enough to guarantee reliability. High
assurance applications require software components that can function correctly even when faced with improper usage
or stressful environmental conditions”.

The aim of this method is to guarantee reliability by using a model and test schema that require the software to
pass several reliability (and risk) checks before they can be certified. “Improper usage” is reflected in the rate of
failure incidence in the model and “stressful environmental conditions” is included by imposing the most stringent
test conditions on safety critical software.

VI. NASA Space Shuttle Application
The feasibility of applying the sequential reliability test concepts to the Shuttle flight software using the

Schneidewind software reliability model [10] is investigated. Any software reliability growth model (SRGM) would
suffice for this purpose.

An assumption of SRGMs is that reliability will increase with time, as faults are removed as they are discovered.
Thus, a sufficiently long test time is used to: 1) collect failure data in order to estimate the model parameters and
2) allow reliability growth to take place (e.g., reliability reaches an acceptable level). Once 1) and 2) have been
accomplished, the reliability of the software for the specified mission duration tm can be predicted. The first step is
to define model quantities.

A. Definitions
1. Risk

According to NASA-STD-8719.13A [11], “risk is a function of: the possible frequency of occurrence of an
undesired event, the potential severity of resulting consequences, and the uncertainties associated with the frequency
and severity”. This broad definition is used to encompass the specific model definition of risk as the probability (i.e.,
frequency of occurrence) of failures (i.e., undesired event), with failure count r (i.e., potential severity), and variance
of probability and failure count (i.e., uncertainties) occurring on a software release.

Safety critical: an application in which high risk and low reliability would jeopardize the safety of the crew and
mission

2. Actual (Empirical) Quantities
μc(t, rc): actual consumer software risk at time t when rc failures have occurred
μp(t, rp): actual producer software risk at time t when rp failures have occurred
Pac(t, rc): actual consumer software probability of rc failures at time t

Pap(t, rp): actual producer software probability of rp failures at time t

Rac(t, rc): actual consumer software reliability computed over time t and failure count rc

Rap(t, rp): actual producer software reliability computed over time t and failure count rp

ρc: actual consumer software reliability growth
ρp: actual producer software reliability growth

3. Consumer Estimated or Predicted Quantities
α(t, rc): consumer software risk: probability of consumer predicted failures: probability of accepting bad software

at time t when rc failures have occurred
rc(t): number of consumer software failures whose faults have been removed at time t

mc(t): consumer software predicted mean number of failures predicted to occur at time t

Lm: maximum allowable consumer risk for all values of t

Rc(t): consumer software predicted reliability at time t
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Rcs: specified minimum consumer software reliability
ρcp: predicted consumer software reliability growth
ρpp: predicted producer reliability growth

4. Producer Estimated or Predicted Quantities
β(t, rp): producer software risk: probability of producer predicted failures: probability of accepting bad software at

time t when rp failures have occurred
rp(t): number of producer software failures whose faults have been removed at time t

mp(t): producer software predicted mean number of failures predicted to occur at time t

Rp(t): producer software predicted reliability at time t

Rps: specified minimum producer software reliability, where Rps � Rcs (i.e., to favor the consumer in mission and
safety critical applications).

B. Risk Analysis
Next, the consumer and producer risk equations for the Shuttle are developed. These equations are used in the

test rules and scenario and in the risk plots. Because there are several streams of failure data available for a given
software release (i.e., operational increment (OI)), one failure stream can be used for the consumer and another for
the producer. The logic of this is that the producer would deliver software with a certain reliability that the consumer
would attempt to continue to increase by removing more faults. The next step is to formulate the risk equations (1–4):

Predicted consumer risk = α(t, rc) = [(mc(t)
re−m

c

(t)
)/rc!]rc (1)

Predicted producer risk = β(t, rp) = [(mp(t)re−m
p

(t)
)/rp!]rp (2)

Actual consumer Risk = μc(t, rc) = Pac(t, rc)rc (3)

Actual producer Risk = μp(t, rp) = Pap(t, rp)rp (4)

C. Reliability Analysis
In addition to risk, the second component of the model is reliability. Using a reliability growth model that has

been used on the Shuttle, the equations that are used in the test rules and scenario are developed. The general form
of consumer and producer reliability at time t is given by Eq. (5) [10]

R(t) = exp −[a(e − b(t − s + 1))] (5)

where a, b, and s are model parameters estimated from the Shuttle failure data.

D. Reliability Growth
For safety critical systems such as the Shuttle, it is important to demonstrate reliability growth, as contributing

to the safety of the crew and mission. As pointed out by Musa et al. [12], it may be necessary for an organization
to demonstrate the reliability of its product “as delivered”. For example, there could be a test where the consumer
“buys off” the product from the producer. In this case, particularly for safety critical software, the test model and
scenario must enforce a high standard of reliability (and risk) before the product is accepted.

As the Shuttle uses a reliability growth model, test rules are conditioned to capture this important characteristic.
To compute reliability growth quantitatively, Tian [13] suggests that reliability growth can be measured by the
purification level ρ, i.e., the ratio between the number of defects removed during testing over the total defects at the
beginning of testing. He states that the purification level captures overall reliability growth and testing effectiveness.
The objective of my model’s use of purification level is to produce tests that have high testability (i.e., use tests that
will cause failures to be detected and faults to be exposed and removed).

VII. Test Rules
Test rules are based on: 1) mandatory risk, reliability, risk prediction accuracy, reliability prediction accuracy,

and reliability growth; and 2) desirable reliability growth. Although important, desirable reliability growth is not
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considered as important as the other criteria. This is a subjective judgment that the model user might want to change.
In addition, as indicated in Fig. 1, the test scenario consists of two complete tests for the software to be accepted or
rejected. This is another feature that the model user could change.

Fig. 1 Shuttle risk-driven testing and reliability process.
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Accept software if the following software rules evaluate to “true”. Accept model if the following model rules
evaluate to “true”.

For all values of time t = tm (mission duration):
1) Risk:

Mandatory for software
Predicted and actual consumer and producer risks less than the limit:
a. Consumer risk, α(t, rc) < Lm;
b. Producer risk, β(t, rp) < Lm;
c. Actual consumer risk, μc(t, rc) < Lm, actual producer risk, μp(t, rp) < Lm;
Mandatory for prediction model
Consumer and producer risk prediction errors less than the limits:
d. Consumer prediction error: [μc(t, rc) − α(t, rc)]2 < (consumer risk mean error + 3 standard deviations);
e. Producer prediction error: [μp(t, rp) − β(t, rp)]2 < (producer risk mean error + 3 standard deviations).

2) Reliability
Mandatory for software reliability growth
Predicted and actual consumer and producer software reliabilities exceed the thresholds:
a. Predicted consumer reliability: Rc(t) > Rcs;
b. Predicted producer reliability: Rp(t) > Rps;
c. Actual consumer reliability: Rac(t) > Rcs;
d. Actual producer reliability: Rap(t) > Rps.
Mandatory for prediction model
Consumer and producer reliability prediction errors less than the limits:
e. Consumer prediction error: [Rac(t, rc) − Rc(t, rc)]2 < (consumer reliability mean error + 3 standard

deviations);
f. Producer prediction error: [Rap(t, rp) − Rp(t, rp)]2 < (producer risk mean error + 3 standard

deviations).
Desirable for software reliability growth
Predicted consumer and producer software reliability growths exceed the actual growths:
g. Predicted consumer reliability growth: ρcp > ρc;
h. Predicted producer reliability growth: ρpp > ρp.

The Shuttle test rules, based on using risk, reliability, and reliability growth criteria, are shown in Fig. 1.

VIII. NASA Space Shuttle Application Example
A. Model Parameters

Based on actual Shuttle release failure data, the following parameters in the example problem are specified:
t : consumer test time = 1,…,25; consumer prediction range = 26,…,45
t : producer test time = 1,…,36; producer prediction range = 37,…,45
tm: = desired mission duration = 8 (45 – 37)

Test time, above, can be different for consumer and producer because each may choose to test a different amount
of time, dependent on their risk and reliability objectives. For example, the producer may have more resources that
the consumer to do testing and, therefore, test for a longer time, and, in addition, is being paid by the consumer to
do testing. This difference leads to different prediction ranges, given the end of the mission at t = 45. Of course,
the mission duration must be the same for consumer and producer. A mission duration of 8 days is typical for the
Shuttle.
rc: mean of consumer failure distribution = 0.2400 failures
rp: mean of producer failure distribution = 0.1818 failures

Since rc is needed in the computation of consumer risk for the prediction range t = 26, . . . , 45, and there are no
historical data available for this range, this quantity was predicted. Likewise, rp for producer risk in the prediction
range t = 37, . . . , 45 was predicted.
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B. Model Limits and Thresholds
Lm: risk limit = 0.500 000

What is the basis for this risk limit? Admittedly, it is somewhat subjective, but it is based on the following
consideration: risk is the (probability of r failures) x (r failure count). For this software, it is reasoned that the

Fig. 2 Shuttle test: consumer risk(alpha), producer risk (beta), and actual risk (μ) vs test time t.

Fig. 3 Shuttle first test: consumer reliability Rc(t), producer reliability Bp(t), actual consumer reliability Rac(t),
and actual producer reliability Rap vs test time t.
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Fig. 4 Shuttle first test: consumer reliability growth (ρ) vs test time t.

Table 1 Shuttle test results

Step Test rules Outcome Action Details

1. Mandatory 1) d, e Pass Go to step 2 SRc � (ERc + 3σ)

risk prediction for t = tm SRp � (ERp + 3σ)

accuracy for t = tm
2. Mandatory 2) e, f Pass Go to step 3 Src � (Erc + 3σ)

reliability prediction for t = tmSrp � (Erp + 3σ)

accuracy for t = tm
3. Mandatory 1) a, b, c Pass Go to step 4 See Fig. 2

software risk
4. Mandatory 2) a, b, c, d Pass Go to step 5 See Fig. 3

reliability growth
5. Desirable software 2) g, h Pass Accept software as See Fig. 4

reliability growth safety critical

Definitions:
Consumer software risk error: SRc
Consumer software mean risk error: ERc
Producer software risk error: SRp
Producer software mean risk error: ERp
Consumer software reliability error: Src
Consumer software mean reliability error: Erc
Producer software reliability error: Srp
Producer software mean reliability error: Erp
tm: Mission duration

319



SCHNEIDEWIND

probability is 0.5 for r = 1, or Lm = 0.5. The reason for six decimal places in the risk limit is that actual, consumer,
and producer risks can be very small, as you can see in Fig. 2.
Rcs: specified minimum consumer reliability = 0.9500
Rps: specified minimum producer reliability, where Rps < Rcs = 0.9000

My choice of reliability thresholds is based on the criticality of this mission to the safety of the crew and Shuttle,
and the need to impose a higher threshold for consumer reliability because, ultimately, the consumer has responsibility
for the success of the mission.

C. Results from Shuttle Test
Key figures and summarized results are provided in Table 1. The first key figure, Fig. 2 indicates that mandatory

risks tests have been passed. The second key figure, Fig. 3 indicates that mandatory reliability tests have been passed.
The third key figure, Fig. 4 demonstrates that the desirable reliability growth test for the consumer has been passed.
The producer test was also passed, but its plot is not shown because the result is almost identical to the consumer
test. The final outcome, as noted in Table 1, is that this safety critical software has been accepted.

IX. Conclusions
1) For safety critical systems such as the Shuttle, it is important to demonstrate low risk, high reliability, and

reliability growth. Thus, the model and test scenarios include all of these criteria.
2) The detailed analysis required by my model and test process provides a great deal of insight into the complex

interrelationships among consumer and producer risk and reliability.
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